On multiplicities in length spectra of arithmetic hyperbolic three-orbifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetries, Isometries and Length Spectra of Closed Hyperbolic Three-Manifolds

Hodgson was partially supported by the Australian Research Council. Weeks was partially supported by the National Science Foundation grant DMS-8920161, through the Geometry Center at the University of Minnesota.

متن کامل

Peripheral separability and cusps of arithmetic hyperbolic orbifolds

For X = R , C , or H , it is well known that cusp cross-sections of finite volume X –hyperbolic (n + 1)–orbifolds are flat n–orbifolds or almost flat orbifolds modelled on the (2n + 1)–dimensional Heisenberg group N2n+1 or the (4n + 3)–dimensional quaternionic Heisenberg group N4n+3(H). We give a necessary and sufficient condition for such manifolds to be diffeomorphic to a cusp cross-section o...

متن کامل

Cusps of Minimal Non-compact Arithmetic Hyperbolic 3-orbifolds

In this paper we count the number of cusps of minimal non-compact finite volume arithmetic hyperbolic 3-orbifolds. We show that for each N , the orbifolds of this kind which have exactly N cusps lie in a finite set of commensurability classes, but either an empty or an infinite number of isometry classes.

متن کامل

The length spectra of arithmetic hyperbolic 3-manifolds and their totally geodesic surfaces

We examine the relationship between the length spectrum and the geometric genus spectrum of an arithmetic hyperbolic 3-orbifold M . In particular we analyze the extent to which the geometry of M is determined by the closed geodesics coming from finite area totally geodesic surfaces. Using techniques from analytic number theory, we address the following problems: Is the commensurability class of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 1996

ISSN: 0951-7715,1361-6544

DOI: 10.1088/0951-7715/9/2/014